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DIRECT METHANOL LIQUID-FEED FUEL CELL

                   

PROTON EXCHANGE MEMBRANE
(PEM)

CO2

<3% Methanol / water

Air (O2)

H2O, N2, O2

- ELECTRODE +  ELECTRODE

LOAD

6e- 6e-
+-

OXIDANT
+

  H2O

CO2

  

+

3/2 O2

H+

H+

H+

H+

H+

H+

H+               

H+

H+

H+

H+

H+

6H+

3% Methanol / Water

FUEL

3H2O

6H+

+

CH3OH



ELECTROCHEMICAL  TECHNOLOGIES

ra
di

at
or

gas-liquid
separator

Cold-start
heater

m
ix

er

circulation 
pump

Feed
pump

Pure
methanol

methanol out
stack

Air supply

air/water
return 

sump tank

Sump
Pump

Vapor
cooler

vent

CO2

Methanol
sensorby

p
as

s

LAYOUT OF DIRECT METHANOL FUEL
CELL SYSTEM



ELECTROCHEMICAL  TECHNOLOGIES

ADVANTAGES OF THE DIRECT METHANOL
FUEL CELL SYSTEM

¥ SIMPLER THAN A  REFORMER SYSTEM

¥ GOOD THERMAL CONTROL OF STACK

¥ SIMPLER STACK DESIGNS

¥ LOWER TEMPERATURE OF OPERATION
COMPARED TO A REFORMER

¥ CAPABLE OF AMBIENT TEMPERATURE

    START-UP
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RECENT ADVANCES IN DIRECT METHANOL-AIR
FUEL CELLS
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TECHNICAL APPROACHES TO ADVANCES

¥ Preparation of anode catalysts with high  activity

¥ Improved methods of fabrication of membrane-electrode
assemblies; improved catalyst utilization

¥ Modification to electrode structures to improve mass
transfer

¥ Lowering fuel loss due to crossover :

Ð new membranes, and modified electrode structures

¥ Fabrication of stacks and studying their electrical
performance

¥ Obtaining system related information from experiments on
stacks

¥ System modeling and integration studies
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HIGH CURRENT DENSITIES WITH HIGH
METHANOL CONCENTRATION
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High concentrations allow attainment of high power densities
However, crossover of methanol is an issue at high concentrations
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METHANOL CROSSOVER AND ITS
IMPLICATIONS

CH3OH CH3OH +3/2O2
       CO2 + 2H2O

O2

Implications:

Parasitic fuel loss;20%

Lower cell voltage; by 0.1V

Increased air demand

Reduction in efficiency

- +
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MEASUREMENT OF CROSSOVER RATE

¥ CO2 content of cathode stream (JPL)
Ð in situ, electrode effects, effect of current density

¥ Estimation of limiting currents for transport of
methanol through membrane

Ð   in-situ , electrode effects, effect of current density

¥ Permeation rate measurements through
membranes

Ð ex situ, only membrane properties

¥ Fuel Efficiency:  ( Coulombs out )/ (Coulombs In)
Ð Most direct method, suited especially for  large cells and  large

stacks.
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¥ Crossover Current Density Increases With Temperature and Methanol Molarity. 
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¥ Crossover Current Density Decreases With Applied Current Density. 
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DEPENDENCE OF CROSSOVER RATE ON APPLIED
CURRENT DENSITY

Three separate regions seen in this dependence.  The curve is
dominated by a linear region and an asymptotic region.
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iapp

icr

iapp = applied current density
icr = crossover current density
Del = apparent diffusion coefficient

in the electrode structure
Dmem = apparent diffusion coefficeint

in the membrane
A = area
F = Faraday
n = number of electrons/ mole
C* = concentration of MeOH at

the inlet
C = concentration of MeOH adjacent

to the edge of membrane

Membrane

Electode

del dmem

C* MeOH

0

  icr = nFADel { 1/(1+k)}C
*
/del   -  iapp {1/(1+k)}

where  k  =  Del d mem/( Dmem del)

ANALYSIS OF CROSSOVER RATE AND ITS DEPENDENCE ON
                                 APPLIED CURRENT DENSITY

 Experimentally, k1/k2= 3.7, 
Compares well with 7mil/2mil=3.5 

k1 /k2  =    d mem 1 / dmem 2
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EFFECT OF ELECTRODE STRUCTURE ON
CROSSOVER RATE
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Crossover rate can be modified using different electrode structures
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EFFECT OF COMPOSITE LAYERS OF TWO
DIFFERENT EQUIVALENT  WEIGHTS
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CONDUCTIVITY OF VARIOUS NAFION
TYPES
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  THE CURRENT DENSITY ATTAINED AT
MAXIMUM EFFICIENCY

¥ Current density at maximum efficiency point increases with temperature

  and concentration
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EFFECT OF CROSSOVER AND
TEMPERATURE ON MAXIMUM EFFICIENCY
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¥ Maximum efficiency decreases with increasing temperature at all molarities
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¥ The DMFC cathode is starved for O2, when operating on 1M MeOH. 



ELECTROCHEMICAL  TECHNOLOGIES

IMPLICATIONS OF NEW MEMBRANE

¥ Lower water transport
Ð Allows operation at low air flow rates

Ð Beneficial for cathode operation

Ð  Dry out possible at higher temperatures

¥ Membrane hydration and conditioning a very slow
process

¥ Need to optimize MEA
Ð Temperature, Pressure, catalyst layer composition etc.
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PERFORMANCE OF LOW CROSSOVER 
 MEMBRANE  

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 50 100 150 200 250

current density, mA/cm
2

USC-JPL  Membrane

Nafion 117

60 oC,    0.5 M  methanol,

Air at Opsig  0.1 l/min,  25 cm2 cell

Newly developed USC-JPL membranes show 
25% of the crossover of Nafion 117 and good performance 



ELECTROCHEMICAL  TECHNOLOGIES

¥Efficiencies greater than 40% are projected with  membranes exhibiting low methanol crossover
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SUMMARY

¥ Crossover reduction will allow attainment of
higher power densities, by allowing higher
concentrations of methanol to be used.

¥ Crossover  reduction will reduce air demand
Ð Higher operating temperature

Ð Reduced parasitic power loss

Ð Improved voltage efficiency

¥ Membranes with low permeability will tolerate
large variations in methanol concentration

¥ Crossover reduction strategies must not
compromise on voltage efficiency

¥ New USC-JPL membrane demonstrated as  an
example of  improved membrane
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